
Poster: Using Semantic Snippets of Malware Traces
for Efficient Behavioral Analysis

Jaime C. Acosta (Project Lead)
U.S. Army Research Laboratory

White Sands Missile Range, NM 88002–5513
http://www.jaimeacosta.info/

Brenda G. Medina (Project Member)
U.S. Army Research Laboratory

White Sands Missile Range, NM 88002–5513

I. INTRODUCTION

Given the myriad of new malware instances released each
year, complete manual analysis is infeasible. However, it is
important for a human analyst to document the behavior
for future identification and for forensic investigations. On
the bright side, many of the malware instances are slightly
changed and recycled; this leads to substantial duplication.
Current automated methods identify commonalities in malware
activity logs and cluster similar instances. However, these
methods lack semantic behavior identification and attention
to multi-purpose malware.

Our work focuses on identifying sequences of semantically-
rich log events that are shared among malware instances.
These events will be labeled by analysts (see Figure 1). Future
encounters of these log events will be replaced with these
labels to reduce duplicate work and to facilitate analysis of
multi-purpose malware. These labels will also be used to build
a system to automatically classify malicious behaviors. In this
paper, we first detail issues related to the current analysis
process. Next, we provide our methodology and our steps up
to now. Lastly, we describe our future plans.

Fig. 1. Eventually, semantically-rich log sequences can be labeled by
analysts.

II. THE ANALYSIS PROCESS

The process of malware analysis is long and requires
high technical expertise. This process involves capturing and
analyzing a binary file. If the binary is malicious, a hash
signature is generated and the behavior is documented.

Most malicious executables are captured with honeypots
and then hash signatures are generated. This allows traditional

anti-virus scanners to identify known malware on systems by
matching these hash signatures to executables. However, these
scanners are not capable of identifying even slightly modified
and recycled malware. Novel methods, therefore, attempt to
identify malware based on behavior.

Two prominent methods for behavior analysis are static and
dynamic. Static analysis requires reverse engineering binary
files. Many times malware is obfuscated, meaning that the
malicious code is intentionally hidden. This makes the analysis
extremely complex and limited to small binaries. Alternatively,
dynamic analysis [1] involves running malware in a sandbox
environment and reviewing activity logs (dynamic analysis).
Even using dynamic analysis, finding malicious behavior is
non-trivial due to the large sized logs. For this reason, auto-
mated similarity detection is used.

Bayer et al. [2] use machine learning algorithms to identify
similarities in malware instances by comparing their activity
logs, which include system calls, their dependencies, and
network behavior. Next, the malware instances are clustered
based on their dynamic behavior. A limitation of this approach
is that the algorithm is trained with a fixed set of malware.
It does not allow retraining with additional malware samples
during the clustering phase. Malheur [3] extends this by
establishing an iterative mechanism that consists of clustering
and then classifying new instances into existing clusters. In
his work, similarity is determined by the presence of shared
fixed-length instruction sequences.

After the instances are clustered, an analyst may have to
conduct deeper investigation, such as finding exact differences
and similarities in the binaries. It may be the case that malware
in different clusters share common behaviors. This results in
redundant analysis by a human analyst. Another issue is that
instances in a cluster are not exactly the same. There may
be malicious behavior that is unique to one instance within
a cluster. One way to alleviate these issues is to, instead of
determining similarity by using fixed length sequences as in
previous work, develop techniques that are not tied to sequence
length and automatically detect varied sized semantically-
representative sequences. These sequences can then be labeled
by an analyst to reduce future workload and eventually these
labels can be used to automatically determine malicious se-
quences.



III. COMPLETED MILESTONES

We will build a system to improve malware analysis.
Our methodology consists of efficiently identifying common
substrings among malware, facilitating the labeling process,
and finally using these labels to build a system to automatically
identify and label malware behavior substrings.

A. Common behaviors among malware

Similar malware produce similar activity logs. Using a
public dataset [4], we showed that by labeling a set of short
malware logs, an analyst’s workload can be greatly reduced.
In this work, we identified common substrings of a minimum
length, n, among a set of short malware logs. The short
set contained 2071 logs totaling 44MB. We then used these
common substrings to determine their presence in a set of
longer malware activity logs. The longer set contained 1,060
logs totaling 490MB. Regarding the dataset, we used only
event descriptions and omitted event parameters (e.g., for an
open socket event, we did not use the port number, interface
name, etc.) Test results using different lengths n are shown in
Figure 2.

Fig. 2. Average percentage of the large set accounted for by small set’s
common substrings

The results show that the similarities are not restricted
to short sequences. Using n = 12, the short set’s common
substrings account for half of the longer set. A problem
during this work was the long time taken to extract common
substrings. For this reason, the next step was to determine if
parallelization could improve performance.

B. Efficient Common Substring Identification

We considered four implementations of the common sub-
strings algorithm. Along with the original dynamic program-
ming approach, we implemented two parallel versions (one us-
ing threads and a semantically equivalent CUDA counterpart).
We tested performance with multiple input strings. Figure 3

shows that using the CUDA, execution time is decreased by
roughly 7 times and has seemingly linear growth.

Fig. 3. Performance of common substring implementations with multiple
inputs.

IV. WORK IN PROGRESS

A. Graphical User Interface

Our current focus is to facilitate the labeling of common
behaviors. Our envisioned use case starts with an analyst given
a set of malware activity logs. Using a graphical user interface,
the analyst will first run the common substrings algorithm.
Next, the analyst will choose a short activity log. The interface
will display all common substrings found among the set of
malware. An analyst can then label these substrings and the
labels will replace other occurrences with these labels. We
are currently implementing this such an interface and we will
measure its quantitative utility.

B. Automatic Behavior Labeling

Still underway is research to determine ways to automat-
ically label malicious behaviors in activity logs. Obviously,
not all common substrings in malware are malicious. An open
research question is how to distinguish these automatically.
We plan to use machine learning for this task. At first we plan
to use the analysts’ labels to classify malicious versus non-
malicious substrings. Eventually, we will investigate if more
sophisticated behaviors can be labeled automatically.

REFERENCES

[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A Survey on Automated
Dynamic Malware Analysis Techniques and Tools,” ACM Computing
Surveys, to appear, 2011.

[2] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scal-
able, Behavior-Based Malware Clustering,” in Network and Distributed
System Security Symposium (NDSS). Citeseer, 2009.

[3] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning,” Journal of Computer Security,
vol. 19, no. 4, pp. 639–668, 2011.

[4] J. Acosta, “Using the longest common substring on dynamic traces of
malware to automatically identify common behaviors,” in Proceedings of
the 6th International Conference on Information Warfare and Security,
2010.


